an interior point algorithm for solving convex quadratic semidefinite optimization problems using a new kernel function

نویسندگان

m. r. peyghami faculty of matematics

s. fathi hafshejani faculty of matematics

چکیده

in this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual interior point method (ipm) based on a new kernel function with a trigonometric barrier term. iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. although our proposed kernel function is neither a self-regular (sr) function nor logarithmic barrier function, the primal-dual ipms based on this kernel function enjoy the worst case iteration bound $oleft(sqrt{n}log nlog frac{n}{epsilon}right)$ for the large-update methods with the special choice of its parameters. this bound coincides to the so far best known complexity results obtained from sr kernel functions for linear and semidefinite optimization problems. finally some numerical issues regarding the practical performance of the new proposed kernel function is reported.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

a path following interior-point algorithm for semidefinite optimization problem based on new kernel function

in this paper, we deal to obtain some new complexity results for solving semidefinite optimization (sdo) problem by interior-point methods (ipms). we define a new proximity function for the sdo by a new kernel function. furthermore we formulate an algorithm for a primal dual interior-point method (ipm) for the sdo by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Kernel Function Based Interior–point Algorithms for Semidefinite Optimization

We propose a primal-dual interior-point algorithm for semidefinite optimization(SDO) based on a class of kernel functions which are both eligible and self-regular. New search directions and proximity measures are defined based on these functions. We show that the algorithm has O( √ n log ε ) and O( √ n logn log ε ) complexity results for smalland large-update methods, respectively. These are th...

متن کامل

Solving Quadratic Multicommodity Problems through an Interior-Point Algorithm

Standard interior-point algorithms usually show a poor performance when applied to multicommodity network flows problems. A recent specialized interior-point algorithm for linear multicommodity network flows overcame this drawback, and was able to efficiently solve large and difficult instances. In this work we perform a computational evaluation of an extension of that specialized algorithm for...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of mathematical sciences and informatics

جلد ۱۲، شماره ۱، صفحات ۱۳۱-۱۵۲

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023